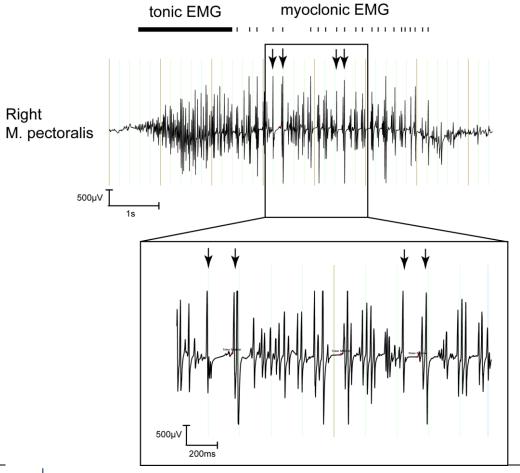


Christos Ganos Wolf Chair in Neurodevelopmental Psychiatry Associate Professor of Neurology, University of Toronto Toronto Western Hospital Movement Disorders Centre

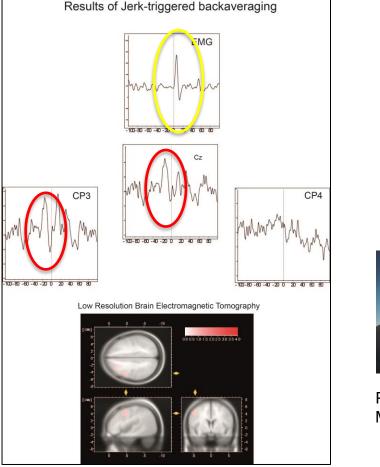
- SPEAKER DISCLOSURES

- Nothing relevant to this talk



THE SYNDROME OF INTENTION OR ACTION MYOCLONUS AS A SEQUEL TO HYPOXIC ENCEPHALOPATHY¹

BY


JAMES W. LANCE¹ AND RAYMOND D. ADAMS

(From the Neurology Service, Massachusetts General Hospital, and the Department of Neurology, Harvard Medical School)

In summary, the essential clinical picture was that of an arrhythmic fine or coarse jerking of a muscle or group of muscles in disorderly fashion, excited mainly by muscular activity, particularly when a conscious attempt at precision was required, worsened by emotional arousal, suppressed bybarbiturates, and superimposed on a mild cerebellar ataxia. The parallelism between the degree of myoclonus and cerebellar signs suggests that the mechanisms of the two disorders are closely related....

PD Christian Moll

Parkinsonism Relat Disord. 1997 Apr;3(2):83-7.

Familial cortical tremor with epilepsy.

Okuma Y¹, Shimo Y, Hatori K, Hattori T, Tanaka S, Mizuno Y.

Author information

1 Department of Internal Medicine (Neurology), Urayasu Hospital of Juntendo University School of Medicine, 2-1-1 Tomioka, Urayasu-city, Chiba 279, Japan.

Mov Disord. 1997 May;12(3):370-7.

Familial cortical myoclonic tremor as a unique form of cortical reflex myoclonus.

Terada K¹, Ikeda A, Mima T, Kimura M, Nagahama Y, Kamioka Y, Murone I, Kimura J, Shibasaki H.

Mov Disord. 2016 Nov;31(11):1704-1710. doi: 10.1002/mds.26756. Epub 2016 Sep 10.

Clinical and neurophysiological features of familial cortical myoclonic tremor with epilepsy.

 $\underline{\text{Cen } Z}^{1,2}, \underline{\text{Huang } C}^3, \underline{\text{Yin } H}^1, \underline{\text{Ding } X}^1, \underline{\text{Xie } F}^{1,4}, \underline{\text{Lu } X}^{1,5}, \underline{\text{Ouyang } Z}^1, \underline{\text{Lou } Y}^{1,2}, \underline{\text{Qiu } X}^1, \underline{\text{Wang } Z}^1, \underline{\text{Xiao } J}^6, \underline{\text{Ding } M}^1, \underline{\text{Luo } W}^1.$

Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy.

Ishiura H¹, Doi K², Mitsui J¹, Yoshimura J², Matsukawa MK¹, Fujiyama A³, Toyoshima Y⁴, Kakita A⁴, Takahashi H⁴, Suzuki Y², Sugano S⁵, Qu W², Ichikawa K², Yurino H⁶, Higasa K⁷, Shibata S¹, Mitsue A¹, Tanaka M¹, Ichikawa Y⁸, Takahashi Y⁹, Date H¹, Matsukawa T¹, Kanda J¹, Nakamoto FK¹, Higashihara M¹⁰, Abe K¹¹, Koike R¹², Sasagawa M¹³, Kuroha Y¹², Hasegawa N¹⁴, Kanesawa N¹⁵, Kondo T¹⁶, Hitomi T^{16,17}, Tada M¹⁸, Takano H¹⁹, Saito Y²⁰, Sanpei K²¹, Onodera O¹⁸, Nishizawa M²², Nakamura M²³, Yasuda T²⁴, Sakiyama Y²⁵, Otsuka M²⁶, Ueki A, Kaida Kl²⁷, Shimizu J¹, Hanajima R²⁸, Hayashi T¹, Terao Y²⁹, Inomata-Terada S¹, Hamada M¹, Shirota Y¹, Kubota A¹, Ugawa Y³⁰, Koh K³¹, Takiyama Y³¹, Ohsawa-Yoshida N³², Ishiura S^{32,33}, Yamasaki R³⁴, Tamaoka A³⁵, Akiyama H³⁶, Otsuki T³⁷, Sano A²³, Ikeda A³⁸, Goto J³⁹, Morishita S², Tsuji S^{40,41,42}.

Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3.

Elorian RT¹, Kraft F², Leitão E¹, Kaya S¹, Klebe S³, Magnin E⁴, van Rootselaar AF⁵, Buratti J⁶, Kühnel T¹, Schröder C¹, Giesselmann S², Tschernoster N⁷, Altmueller J⁷, Lamiral A⁴, Keren B⁶, Nava C^{6,8}, Bouteiller D⁸, Forlani S⁸, Jornea L⁸, Kubica R¹, Ye T⁹, Plassard D⁹, Jost B⁹, Meyer V¹⁰, Deleuze JF¹⁰, Delpu Y¹¹, Avarello MDM¹¹, Vijfhuizen LS¹², Rudolf G^{9,13}, Hirsch E¹³, Kroes T¹⁴, Reif PS^{15,16}, Rosenow F^{15,16}, Ganos C¹⁷, Vidailhet M^{8,18}, Thivard L¹⁸, Mathieu A¹⁹, Bourgeron T¹⁹, Kurth I², Rafehi H^{20,21,22}, Steenpass L¹, Horsthemke B¹; FAME consortium, LeGuern E^{6,8}, Klein KM^{15,16,23}, Labauge P²⁴, Bennett MF^{20,21,22}, Bahlo M^{20,21}, Gecz J^{14,25}, Corbett MA¹⁴, Tijssen MAJ²⁶, van den Maagdenberg AMJM^{12,27}, Depienne C^{28,29,30}.

Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2.

Corbett MA¹, Kroes T¹, Veneziano L², Bennett ME^{3,4,5}, Florian R⁶, Schneider AL⁵, Coppola A⁷, Licchetta L^{8,9}, Franceschetti S^{10,11}, Suppa A^{12,13}, Wenger A¹⁴, Mei D¹⁵, Pendziwiat M¹⁶, Kaya S⁶, Delledonne M¹⁷, Straussberg R^{18,19}, Xumerle L²⁰, Regan B⁵, Crompton D^{5,21}, van Rootselaar AE²², Correll A²³, Catford R²³, Bisulli E^{8,9}, Chakraborty S¹⁴, Baldassari S⁸, Tinuper P^{8,9}, Barton K²⁴, Carswell S²⁴, Smith M^{24,25}, Berardelli A^{12,13}, Carroll R¹, Gardner A¹, Friend KL²³, Blatt I²⁶, Iacomino M²⁷, Di Bonaventura C¹², Striano S²⁸, Buratti J²⁹, Keren B²⁹, Nava C³⁰, Forlani S³⁰, Rudolf G^{31,32,33,34,35}, Hirsch E³⁴, Leguern E^{29,30}, Labauge P³⁶, Balestrini S^{37,38}, Sander JW^{37,38}, Afawi Z¹⁹, Helbig I^{16,39}, Ishiura H⁴⁰, Tsuji S^{40,41,42}, Sisodiya SM^{37,38}, Casari G⁴³, Sadleir LG⁴⁴, van Coller R⁴⁵, Tijssen MAJ⁴⁶, Klein KM^{47,48,49}, van den Maagdenberg AMJM⁵⁰, Zara F²⁷, Guerrini R¹⁵, Berkovic SE⁵, Pippucci T⁵¹, Canafoglia L^{10,11}, Bahlo M^{3,4}, Striano P^{52,53}, Scheffer IE^{5,54}, Brancati F^{2,55,56}, Depienne C^{6,31,35}, Gecz J^{57,58}.

Familial adult myoclonus epilepsy: Clinical findings, disease course, and comorbidities

Beatriz G. Giraldez^{1,2} | José M. Serratosa^{1,2} | Salvatore Striano³ | Akio Ikeda⁴ | Pasquale Striano^{5,6} | Antonietta Coppola³

(6)

UNIVERSITY OF TORONTO

Medicine

Neurology

Familial adult myoclonus epilepsy: Neurophysiological investigations

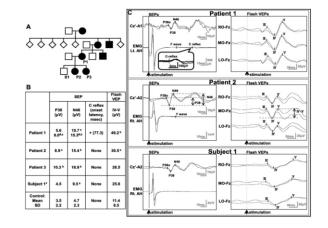
Raffaele Dubbioso¹

•

Antonio Suppa^{2,3} | Marina A. J. Tijssen^{4,5} | Akio Ikeda⁶

10 VISUAL EVOKED POTENTIALS

Besides sensory-motor cortex hyperexcitability, FAME/ BAFME patients might also display a significant increase of primary visual cortex excitability. The neurophysiological correlate is the significant enlargement of visual evoked potentials (VEPs).⁶ In a recent study on BAFME patients carrying the intronic expansions in the SAMD12 gene,²⁹ the authors have found giant VEPs as a reliable measure to detect photosensitive myoclonus elicited during flash stimulation.²⁹ Of interest, in these patients, the authors have observed a clinically overt reflex myoclonus induced by visual stimuli.



Clinical Neurophysiology Volume 131, Issue 4, April 2020, Pages 978-980

Letter to the Editor

Clinical significance of the long-loop reflex and giant evoked potentials in genetically proven benign adult familial myoclonic epilepsy

Ai Demura, Yutaka Demura, Makiko Ota, Takavuki Kondo, Masako Kinoshita 😤 🖾

Parkinsonism Relat Disord. 2014 Mar;20(3):328-31. doi: 10.1016/j.parkreldis.2013.11.011. Epub 2013 Nov 27.

Dystonia with aphonia, slow horizontal saccades, epilepsy and photic myoclonus: a novel syndrome?

Ganos C¹, Biskup S², Krüger S², Meyer-Osores A³, Hodecker S⁴, Hagel C⁵, Schöls L⁶, Bhatia KP⁷, Münchau A⁸.

De novo truncating variants in the intronless *IRF2BPL* are responsible for developmental epileptic encephalopathy

F. Tran Mau-Them, MD^{1,2}, L. Guibaud, MD, PhD^{3,4}, L. Duplomb, PhD², B. Keren, MD, PhD⁵, K. Lindstrom, MD⁶, I. Marey, MD⁵, F. Mochel, MD^{5,7,8}, M. J. van den Boogaard, MD, PhD⁹,
R. Oegema, MD, PhD⁹, C. Nava, MD, PhD⁵, A. Masurel, MD¹⁰, T. Jouan, BS^{1,2}, F. E. Jansen, MD¹¹,
M. Au, MBE, MS¹², Agnes H. Chen, MD¹³, M. Cho, ScM, CGC¹⁴, Y. Duffourd, MsC², E. Lozier, MS¹⁵,
F. Konovalov, PhD¹⁵, A. Sharkov, MD^{15,16}, S. Korostelev, MD¹⁵, B. Urteaga, MsC², P. Dickson, MD¹⁷,
M. Vera, MD, PhD¹⁷, Julián A. Martinez-Agosto, MD, PhD²⁰, A. Begemann, MD¹⁸, M. Zweier, PhD¹⁸,
T. Schmitt-Mechelke, MD¹⁹, A. Rauch, MD¹⁸, C. Philippe, PhD^{1,2}, K. van Gassen, PhD⁹, S. Nelson, MD²⁰,
J. M. Grahamlr, MD, ScD¹², J. Friedman, MD²¹, L. Faivre, MD, PhD^{2,10}, H. J. Lin, MD¹⁷,
C. Thauvin-Robinet, MD, PhD^{1,10} and A. Vitobello, PhD^{1,2}

IRF2BPL Is Associated with Neurological Phenotypes

Paul C. Marcogliese,^{1,25} Vandana Shashi,^{2,25} Rebecca C. Spillmann,² Nicholas Stong,³ Jill A. Rosenfeld,¹ Mary Kay Koenig,⁴ Julián A. Martínez-Agosto,^{5,6,7} Matthew Herzog,⁵ Agnes H. Chen,⁸ Patricia I. Dickson,⁸ Henry J. Lin,⁸ Moin U. Vera,⁸ Noriko Salamon,⁹ John M. Graham, Jr.,⁶ Damara Ortiz,¹⁰ Elena Infante,¹⁰ Wouter Steyaert,¹¹ Bart Dermaut,¹¹ Bruce Poppe,¹¹ Hyung-Lok Chung,¹ Zhongyuan Zuo,¹ Pei-Tseng Lee,¹ Oguz Kanca,¹ Fan Xia,¹ Yaping Yang,¹ Edward C. Smith,¹² Joan Jasien,¹² Sujay Kansagra,¹² Gail Spiridigliozzi,¹³ Mays El-Dairi,¹⁴ Robert Lark,¹⁵ Kacie Riley,² Dwight D. Koeberl,² Katie Golden-Grant,¹⁶ Program for Undiagnosed Diseases (UD-PrOZA), Undiagnosed Diseases Network, Shinya Yamamoto,^{1,17,18,19} Michael F. Wangler,^{1,17,18} Ghayda Mirzaa,^{20,21} Dimitri Hemelsoet,²² Brendan Lee,¹ Stanley F. Nelson,⁵ David B. Goldstein,³ Hugo J. Bellen,^{1,17,18,19,23,*} and Loren D.M. Pena^{2,24,*}

IRF2BPL mutations cause autosomal dominant dystonia with anarthria, slow saccades and seizures

Christos Ganos 1 , Simone Zittel 2 , Ute Hidding 2 , Claudia Funke 3 , Saskia Biskup 3 , Kailash P Bhatia 4

BRIEF COMMUNICATION 🔂 Open Access 🛛 😨 🚯

IRF2BPL as a novel causative gene for progressive myoclonus epilepsy

Elena Gardella 🔀, Roberto Michelucci, Hanne M. Christensen, Christina D. Fenger, Chiara Reale, Patrizia Riguzzi, Elena Pasini, Luca Albini-Riccioli, Valentina Papa, Maria Pia Foschini, Giovanna Cenacchi, Francesca Furia, Dragan Marjanovic, Trine B. Hammer, Rikke S. Møller, Guido Rubboli

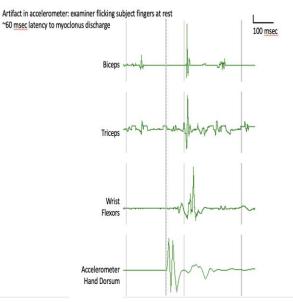
BRIEF REPORT

IRF2BPL-Related Disorder, Causing Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech and Seizures (NEDAMSS) Is Characterized by Pathology Consistent with DRPLA

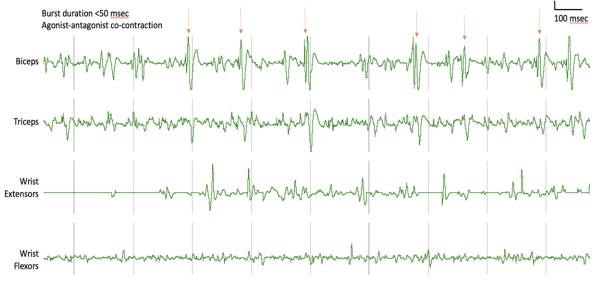
> Parkinsonism Relat Disord. 2020 Apr 9;S1353-8020(20)30094-8. doi: 10.1016/j.parkreldis.2020.03.030. Online ahead of print.

IRF2BPL Mutation Causes Nigrostriatal Degeneration Presenting With Dystonia, Spasticity and Keratoconus

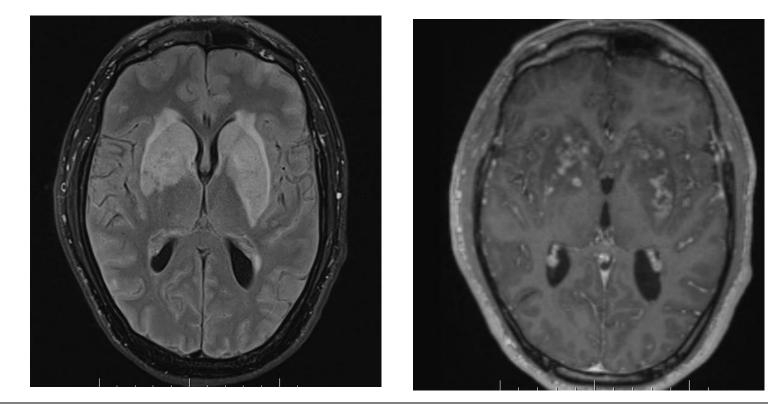
Lisa Prilop ¹, Ralph Buchert ², Sarah Woerz ³, Christian Gerloff ¹, Tobias B Haack ⁴, Simone Zittel ⁵



Myoclonus triggered by tactile stimulus



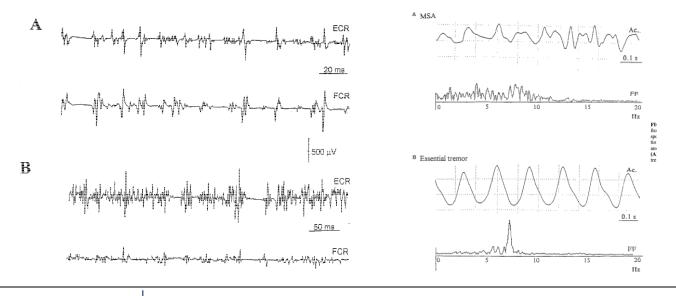
Myoclonus during postural holding


Medicine **UNIVE**

UNIVERSITY OF TORONTO

Neurology

Cryptococcal Meningoencephalitis



Postural and Action Myoclonus in Patients With Parkinsonian Type Multiple System Atrophy

Gabriel Salazar, MD, Josep Valls-Solé, MD, Maria J. Martí, MD, Helen Chang, MD, and Eduardo S. Tolosa, MD

Case Series 🔂 Free Access

Stimulus Sensitive Foot Myoclonus: A Clue to Coeliac Disease

Silvia Jesús MD, PhD, Anna Latorre MD, Angel Vinuela MD, Stanley Fahn MD, FAAN, Kailash P. Bhatia FRCP ➡, Bettina Balint MD

Review > Brain. 1995 Oct;118 (Pt 5):1087-93. doi: 10.1093/brain/118.5.1087.

Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum

K P Bhatia ¹, P Brown, R Gregory, G G Lennox, H Manji, P D Thompson, D W Ellison, C D Marsden

Cortical myoclonus and cerebellar pathology

M.A. J. Tijssen, M. Thom, D.W. Ellison, P. Wilkins, D. Barnes, P.D. Thompson, P. Brown

The Role of the Cerebellum in the Pathogenesis of Cortical Myoclonus

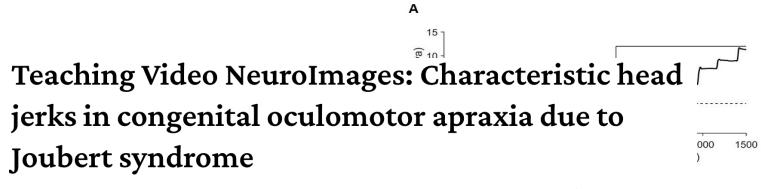
Christos Ganos, MD,^{1,2,3} Panagiotis Kassavetis, MD,¹ Roberto Erro, MD,¹ Mark J. Edwards, MD,¹ John Rothwell, PhD,¹ and Kailash P. Bhatia, MD, FRCP^{1*}

Spinal cord a-synuclein deposition associated with myoclonus in patients with MSA-C

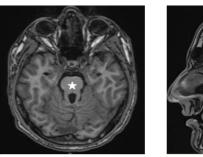
UPDATE Unravelling the enigma of cortical tremor and other forms of cortical myoclonus

DAnna Latorre,^{1,2} Lorenzo Rocchi,¹ DFrancesca Magrinelli,^{1,3} Eoin Mulroy,¹ Alfredo Berardelli,^{2,4} John C. Rothwell¹ and Kailash P. Bhatia¹

Myoclonus in SCGE Myoclonus Dystonia syndrome



What type of jerking is this?



What type of jerking is this?

Friederike Borngräber, MD, Yangfan Peng, MD, Florian Ostendorf, MD, Andrea A. Kühn, MD, and Christos Ganos, MD | AUTHORS INFO &

Thank you ... !

Christos Ganos, Christos.Ganos@uhn.ca Wolf Chair in Neurodevelopmental Psychiatry Associate Professor of Neurology, University of Toronto Toronto Western Hospital Movement Disorders Centre

